

PERÍMETRO DE PROTECCIÓN DE LOS SONDEOS Nº 3 Y 4 DE ABASTECIMIENTO AL NÚCLEO URBANO DE HINOJOS (HUELVA)

ÍNDICE

Pag nº

1.	IN	TROI	OUCCIÓN	3
2.	SIT	ГИАС	IÓN ACTUAL DEL ABASTECIMIENTO	5
2	2.1	Inff	AESTRUCTURAS	5
	2.1	.1.	Captaciones de abastecimiento	5
	2.1	.2.	Depósitos y conducciones	6
2	2.2	SIST	EMA DE ABASTECIMIENTO DEL MUNICIPIO	6
	2.2	2.1.	Importancia de la captación	6
	2.2	2.2.	Volúmenes y caudales captados	6
3.	GE	olo	GÍA E HIDROGEOLOGÍA	7
3	3.1	Mai	RCO GEOLÓGICO E HIDROGEOLÓGICO	7
3	3.2	LÍM	TES Y GEOMETRÍA DEL ACUÍFERO	11
3	3.3	PAR	ÁMETROS HIDRODINÁMICOS Y PIEZOMETRÍA	11
3	3.4	Fun	CIONAMIENTO HIDROGEOLÓGICO Y BALANCE HIDRÁULICO	13
3	3.5	HID	ROQUÍMICA DEL SECTOR	14
4.	FO	COS	POTENCIALES DE CONTAMINACIÓN	17
۷	1.1	Orio	GEN DE LA INFORMACIÓN SOBRE PRESIONES Y FOCOS DE CONTAMINACIÓN	17
2	1.2	Invi	ENTARIO DE FOCOS POTENCIALES DE CONTAMINACIÓN	18
	4.2	2.1.	Actividad agrícola	18
	4.2	2.2.	Actividad ganadera	18
	4.2	2.3.	Actividad Industrial	19
	4.2	2.4.	Residuos sólidos urbanos	19
	4.2	2.5.	Aguas Residuales	19
	4.2	2.6.	Otros focos de contaminación	20
۷	1.3	Foc	OS DE CONTAMINACIÓN PRÓXIMOS A LA CAPTACIÓN	20
۷	1.4	Indi	CIOS DE FOCOS DE CONTAMINACIÓN EN LAS CAPTACIONES	21
5.	VU	LNE	RABILIDAD FRENTE A LA CONTAMINACIÓN	22
5	5.1	DIST	RIBUCIÓN EN EL ENTORNO Y ÁREAS DE RECARGA	22
5	5.2	REL	ACIÓN DE LA VULNERABILIDAD CON LOS FOCOS POTENCIALES DE CONTAMINACIÓN	23
	5.2	2.1.	Tipología de la distribución de presiones y vulnerabilidad	24
	5.2	2.2.	Evaluación cualitativa de la vulnerabilidad y el riesgo	24

6. DI	ELIMITACIÓN Y ZONIFICACIÓN DEL PERÍMETRO DE PROTECCIÓN	27
6.1	Análisis hidrogeológico	27
6.	1.1. Análisis hidrogeológico y geometría del acuífero	27
6.	1.2. Funcionamiento (Isopiezas y líneas de flujo)	27
6.2	CÁLCULOS JUSTIFICATIVOS (BALANCE DE RECURSOS O MÉTODOS ANALÍTICOS)	28
6.3	ZONAS DE INFLUENCIA Y ZONAS DE ALIMENTACIÓN	30
6.4	ZONA DE RESTRICCIONES ABSOLUTAS	30
6.5	ZONAS DE RESTRICCIONES MÁXIMAS	31
6.6	ZONA DE RESTRICCIONES MODERADAS	32
6.7	ZONA DE PROTECCIÓN DE LA CANTIDAD	32
7. RI	ED DE CONTROL Y VIGILANCIA	34
8. CO	ONCLUSIONES Y RECOMENDACIONES	36
9. RI	EFERENCIAS	37

ANEXOS

ANEXO I: REPORTAJE FOTOGRÁFICO

ANEXO II: FICHAS DE INVENTARIO DE LA CAPTACIÓN ANEXO III: FICHAS DE INVENTARIO DE PRESIONES

PLANOS

PLANO 1: SITUACIÓN DE LAS CAPTACIONES DE ABASTECIMIENTO

PLANO 2: MAPA DE VULNERABILIDAD Y PRESIONES

PLANO 3: MAPA DE DELIMITACIÓN DEL PERÍMETRO DE PROTECCIÓN

1. INTRODUCCIÓN

El presente informe corresponde a la delimitación y justificación técnica del perímetro de protección de los sondeos nº 3 y 4, que abastece al núcleo urbano de Hinojos, en la provincia de Huelva. Estas captaciones cortan la Masa de Agua Subterránea Almonte Marismas (MAS 05.51).

La realización de este informe se enmarca dentro de "ESTABLECIMIENTO DE PERÍMETROS DE PROTECCIÓN Y ZONAS DE SALVAGUARDA EN CAPTACIONES PARA CONSUMO HUMANO EN MASAS DE AGUA DE LA CUENCA DEL GUADALQUIVIR" Expediente 1453 / 08, que el INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA, IGME, ha convocado por medio de su Departamento de Investigación en Recursos Geológicos.

La protección del agua es un objetivo prioritario en la política medioambiental europea reflejado específicamente en la Directiva 2000/60/CE, Directiva Marco del Agua (DMA) que, en su artículo 7.1, impone unos límites para calificar una masa de agua como *Drinking Water Protected Area*, "todas las masas de agua utilizadas para la captación de agua destinada al consumo humano que proporcionen un promedio de más de 10 m³ diarios o que abastezcan a más de cincuenta personas, y todas las masas de agua destinadas a tal uso en el futuro".

El marco legal para la realización de perímetros de protección a captaciones de abastecimiento urbano se basa en el artículo 54.3 de la Ley de Aguas y el procedimiento para su inicio se describe en el artículo 173.3 del R.D.P.H. donde se reseña que su delimitación se efectuará a solicitud de la autoridad medioambiental, municipal o cualquier otra en que recaigan competencias sobre la materia.

En los artículos 173.5 y 173.6 del R.D.P.H se describen los condicionamientos que podrán imponerse en el perímetro delimitado con el objeto de impedir la afección a la cantidad o a la calidad de las aguas subterráneas captadas, señalando expresamente los tipos de instalaciones o actividades que podrán ser condicionadas.

En el plano nº1 recogido en el anexo nº1 se representa la ubicación de la captación dentro de la MAS.

En el campo la secuencia de trabajo y metodología que se ha seguido es la siguiente:

- Entrevista con el Ayuntamiento.
- Visita a las captaciones de consumo humano para verificar datos y completar la ficha de las captaciones.
- Piezometría del entorno, para ello se ha tomado medidas de nivel en sondeos en el entorno de la captación.
- Inventario de focos potenciales de contaminación.

2. SITUACIÓN ACTUAL DEL ABASTECIMIENTO

Los puntos de abastecimiento a Hinojos se localizan dentro del término municipal de Hinojos en el paraje "Los Tejones" situado a unos 12 km al suroeste del municipio. Estas captaciones cortan la Masa de Aguas Subterráneas 05.51 Almonte-Marismas. La gestión del agua la realiza la Mancomunidad Aguas del Condado cuya sede social se accede a través del kilómetro1,3 de la carretera de la Palma del Condado Almonte (A-493).

2.1 INFRAESTRUCTURAS

2.1.1. Captaciones de abastecimiento

A continuación se describen las dos captaciones objeto del presente perímetro de protección, que forman parte del sistema de abastecimiento del municipio de Hinojos.

- Sondeo nº 3 (nº de registro IGME 114150105).
- Sondeo nº 4 (nº de registro IGME 114150106).

• Sondeo nº3 (114150105)

Sondeo de abastecimiento en funcionamiento todo el año aunque su funcionamiento queda limitado a horas nocturnas. Tiene una profundidad de 40 m y un diámetro de perforación de 762 mm. Está entubado con tubería metálica de 500 mm de diámetro y equipado con una electrobomba sumergible. El caudal de extracción es de 100 m³/hora (unos 30 l/seg). El nivel estático estaba el 17 de febrero de 2009 a 17,5 m. de profundidad. El sondeo es sustitución del antiguo sondeo del IARA III-6-11 al quedar éste enarenado.

• Sondeo nº4 (114150106)

Sondeo de abastecimiento en funcionamiento todo el año aunque sólo funciona por la noche. Tiene una profundidad de 37 m y un diámetro de perforación de 609 mm. Está entubado con tubería metálica de 500 mm de diámetro. Está equipado con una electrobomba sumergible. El caudal de extracción es de unos 60 l/seg. El sondeo es sustitución del antiguo sondeo del IARA III-6-10 al quedar éste enarenado.

2.1.2. Depósitos y conducciones

El agua procedente de los pozos se almacena en un aljibe, se somete a tratamiento de desinfección y se bombea a las redes de distribución. La capacidad de almacenamiento en Hinojos es de 2.000.000 litros.

2.2 SISTEMA DE ABASTECIMIENTO DEL MUNICIPIO

2.2.1. Importancia de la captación

Los sondeos nº 114150105 y 114150106 abastecen durante todo el año el municipio de Hinojos, cubriendo el 100% de la demanda total de la población que abastece.

2.2.2. Volúmenes y caudales captados

Según datos proporcionados por Aguas del condado los sondeos solon funcionan de noche hasta llenar un aljibe obteniéndose entre las dos captaciones un volumen de extracción diario de unos 2000 m³. El volumen de extracción para todo el año 2008 fue de 424.086 m³.

3. GEOLOGÍA E HIDROGEOLOGÍA

3.1 MARCO GEOLÓGICO E HIDROGEOLÓGICO

Desde el punto de vista geológico la zona de estudio se encuentra en la Depresión del Guadalquivir, en su borde suroccidental, en el contacto de la meseta Hercínica (ver figura nº 1).

La serie-tipo, de muro a techo, podría describirse a grandes rasgos como sigue:

Margas azules del Mioceno superior. Esta formación que aflora en todo el borde septentrional del área, conforma el substrato en el que se asienta las formaciones limoarenosas que compone los acuíferos de la masa de agua Almonte Marismas. Hacia el techo aparecen intercalaciones de limos y arenas. Son margas ricas en fósiles, de facies marinas que afloran desde Chucena hasta las proximidades de Moguer. Se han llegado a medir potencias de hasta 1200 m.

Limos y arenas del Mioceno-Plioceno. Los limos se sitúan en la base y las arenas en el tramo medio y superior de la serie. A medida que el espesor aumenta en la dirección N-S, la granulometría se va haciendo más grosera y limpia. En el recinto del Parque Nacional de Doñana y en las marismas esta formación no aflora presentando unas litofacies bastante diferentes con respecto a las que presenta la formación en los afloramientos situados al norte. Su potencia varia de 20 m (Almonte) a 200 m (franja costera).

Arenas basales o formación roja del Cuaternario antiguo-Plioceno superior. Constituidas por arenas blanco-amrillentas o amarillo-rojizas de granos de cuarzo y en menor proporción de feldespatos y fragmentos de rocas metamórficas. Se superpone, discordantemente, sobre materiales del Plioceno medio. No llega a

alcanzar los 20 m de potencia.

Formaciones costeras cuaternarias: Son playas, dunas y la barra costera actual formadas por arenas silíceas de origen litoral y eólico. Su potencia llega a superar los 60 m.

Las dunas se extienden paralelamente a la línea de costa, desde la desembocadura del río Tinto hasta la del Guadalquivir, que alcanzan su mayor grado de desarrollo en el extremo meridional. En este complejo se pueden distinguir a veces hasta cuatro cordones dunares.

Cuaternario de las Marismas. Se distinguen varios niveles. El inferior está compuesto por gravas y cantos rodados, con un espesor variable entre 10 y 30 m. Suele estar en contacto con las arenas basales y se encuentra generalmente en carga. A continuación aparecen niveles arcillosos y limo arenosos de color gris azulado. Tiene una potencia entre 60 y 150 m.

Otras formaciones. En general, son mantos eólicos, dunas antiguas y terrazas fluviales. Su potencia máxima es de 8 m, salvo las terrazas fluviales que pueden llegar a los 30 m.

Fig. 1 Geología de la zona.

Desde el punto de vista hidrogeológico la zona de estudio se encuentre englobada dentro de la masa de agua subterránea Almonte-Marismas (MAS 05.051) perteneciente al distrito hidrológico del Guadalquivir. La superficie de dicha masa de agua es de unos 2.410 km², de los que unos 1400 km² corresponden a afloramientos de terrenos permeables y el resto a impermeables sobre todo a superficie ocupada por marismas (ver figura nº 2).

Es un acuífero detrítico, permeable por porosidad primaria que constituye un sistema hidrogeológico en el que se distingue dos grandes áreas. La más extensa es la de acuífero libre, es decir donde afloran las arenas, que cubren materiales permeables que se extienden hasta el zócalo margoso, si bien hay zonas en donde son frecuentes intercalaciones limo-arcillosas. En la segunda gran zona los materiales permeables anteriores quedan confinados bajo los materiales impermeables de la zona de marismas la conexión entre ambos se realiza a través de la franja que define la línea de contacto que los separa.

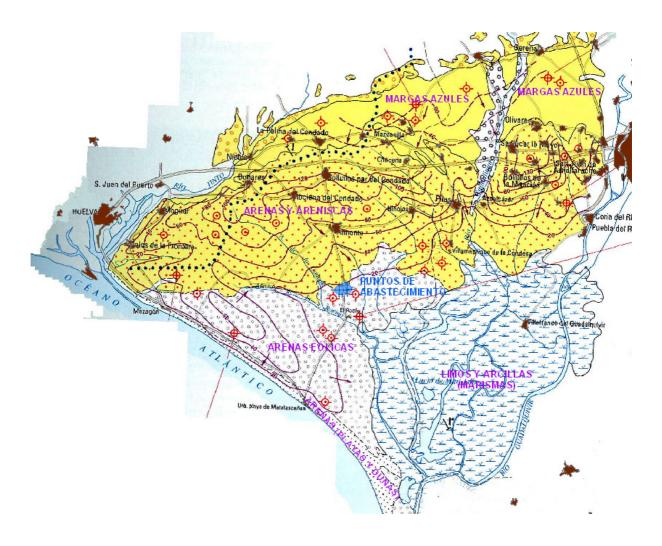


Fig. 2 Esquema hidrogeológico de la MAS 05.51 "Almonte Marismas".

Los materiales permeables suelen ser heterogéneos y variables de un lugar a otro. En la zona del acuífero libre cabe destacar un nivel profundo más grosero y permeable, donde las captaciones son de gran productividad (hasta 100 l/seg) que llega a continuar bajo las marismas, y un recubrimiento, a veces de decenas de metros de espesor, de arenas medias y finas, bastantes menos confinadas que suele actuar como semiconfinante de los materiales anteriores y contiene la superficie freática. Hacia el norte el acuífero libre pierde espesor y las formaciones groseras ya son menos importantes y más someras, este hecho condiciona la baja productividad de los pozos existentes en la zona (Custodio, 1995).

3.2 LÍMITES Y GEOMETRÍA DEL ACUÍFERO

Los límites naturales de la masa de agua Almonte-Marismas (MAS 05.51) vienen impuestos al norte por la divisoria de aguas subterráneas de la cuenca del río Tinto y los afloramientos impermeables de las margas azules del Mioceno superior-Plioceno; al este y sureste, por los ríos Guadiamar y Guadalquivir, y Al sur y oeste por el Océano Atlántico. Cuando el acuífero aparece semiconfinado o confinado, aparecen margas azules a muro y arcillas de las marismas a techo. En la zona libre el tramo permeable aumenta progresivamente su espesor de norte a sur, pasando de 15-20 m en Almonte hasta 80-100 m en El Rocío. Por debajo de Las Marismas, zona confinada, el acuífero incrementa aún más su potencia, llegando a sobrepasar los valores de 200 m en una gran extensión.

Las características de la masa de agua están ligadas a la evolución tectónica del área desde principios del Terciario y al cambio del nivel del mar que se produjo hace unos 10.000 años en el tránsito del final de la última glaciación al momento actual.

3.3 PARÁMETROS HIDRODINÁMICOS Y PIEZOMETRÍA

En la zona de Almonte la permeabilidad oscila entre 1 y 170 m/d correspondiendo la primera a la parte norte de la zona, esto es a la de mayor gradiente hidráulico, así como a la base de las facies Saheliense. En el resto de la zona, la permeabilidad es siempre del orden de 10 m/d, salvo en la zona sur de Villamanrique, en la que alcanza valores de 170 m/d. En general, las transmisividades van de 10 m²/d, en la zona más septentrional, a 100 m²/d, en las áreas de Almonte-El Rocío y Palos-Moguer, y de 1000 a 5000 m²/d en la zona de Marismas.

En el modelo matemático realizado por el IGME se contemplan transmisividades entre 20 y 600 m 2 /d para la capa inferior del acuífero, y una T constante de 55 m 2 /d para la capa superior. El coeficiente de almacenamiento aplicado en el mismo modelo fue de 0.5×10^{-4} .

En la zona del acuífero libre la porosidad eficaz varía entre el 2 y 5%, mientras que en el sector de acuífero confinado el coeficiente de almacenamiento está comprendido entre 10⁻³ y 10⁻⁴.

De manera local en la zona de los puntos de abastecimiento de Almonte, Bollullos par del Condado y Rociana del Condado los parámetros hidráulicos se han calculado en su mayor parte a través de ensayos de bombeo realizados en los sondeos de abastecimiento existentes. Estos datos son los siguientes:

- Punto nº 114150063 (Sondeo Eucalipto). Transmisividad de 420 m²/d con un caudal de bombeo de 77 l/s durante 48 horas y con una depresión de 3,79 m.
- Punto 114150061 (sondeo La Higuera): Transmisividad de 143,4 m²/d con un caudal de bombeo de 105 l/s durante 24 horas y con una depresión de 11,25 m.
- Punto 114210130 (sondeo Matalagrana 1): Transmisividad de 465 m²/d con un caudal de bombeo de 93 l/s durante 24 horas y con una depresión de 12,5 m.
- Punto 114150094 (sondeo Matalagrana 2): Transmisividad de 298 m²/d con un caudal de bombeo de 120 l/s durante 24 horas y con una depresión de 15,96 m.

Como puede apreciarse, todos los valores de transimisividad están en el mismo orden de magnitud.

En la zona de acuífero libre la piezometría se adapta a la topografía, de modo que los niveles de agua subterránea se sitúan a cotas del orden de 100-120 msnm en el entorno de Bonares-Rociana-Bollullos Par del Condado-Chucena y a cotas inferiores a 10 msnm en la costa Atlántica, proximidades del acuífero libre a las marismas y cauce bajo del Guadiamar. La piezometría del acuífero bajo las marismas es poco conocida debido a la existencia de pocos puntos de control piezométrico. La circulación de las aguas subterráneas se dirige hacia el S-SE salvo en la zona costera en la que en parte se dirige hacia el arroyo de la Rocina y en parte hacia el mar.

3.4 FUNCIONAMIENTO HIDROGEOLÓGICO Y BALANCE HIDRÁULICO

La recarga se realiza a partir de la infiltración de agua de lluvia caída en zonas en que el acuífero presenta un carácter libre siendo de menor importancia la recarga producida por los excedentes de agua empleados en regadío.

La descarga natural se realiza por drenaje difuso hacia el mar, ríos, arroyos y lagunas de la zona o extracciones por bombeo. En la zona de la marisma existe un drenaje ascendente a través de los sedimentos.

El agua de recarga desciende a través de las formaciones arenosas, que actúan de forma de acuitardo, y se moviliza lateralmente siendo más preferentes los nivles profundos en donde la permeabilidad es mucho mayor. La circulación por el acuífero confinado se hace más lenta a partir de los ecotonos, y el agua queda casi estacionaria en el interior, donde evoluciona hacia aguas salobres y saladas, por mezcla con aguas marinas preexistentes. Tanto en la zona del acuífero libre como en la confinada existe un gradiente ascendente a través de la zona semipermeable que juega un importante papel regulador del acuífero.

El cálculo de las reservas de aguas subterráneas almacenadas en el acuífero solo se puede conocer de una manera aproximada, ya que no se tienen suficientes datos de porosidad eficaz del mismo. Extrapolando los existentes, se estima que en el acuífero libre existen alrededor de 2.500 hm³ de agua y en el semiconfinado unos 3.000 hm³, lo que hace un conjunto de unos 5.500 hm³.

El balance hídrico de la MAS 05.51 Almonte Marismas según se incluye en su Norma de explotación de 2001 (CHG-IGME) es la siguiente:

ENTRADAS

•	Infiltración de Iluvia	285 hm³/a
•	Retorno de riegos (20% del volumen bombeos)	.20 hm³/a
TAI	L ENTRADAS.	305 hm ³ /a

SALIDAS

•	Bombeos	.84 hm³/a
•	Bombeo para riego	.80 hm³/a
•	Bombeo para abastecimiento	5 hm³/a
•	Salidas naturales	.221 hm³/a
•	Río Tinto	.5 hm³/a
•	Arroyo de la Rocina	.5-15 hm ³ /a
•	Al mar:	10-25 hm ³ /a
•	Recarga acuífero superior	.20 hm³/año
•	Evaporación en acuífero más drenaje ríos y arroyos	.135 hm³/a
TOTA	L SALIDAS	.305 hm ³ /a.

3.5 HIDROQUÍMICA DEL SECTOR

En líneas generales las aguas de la MAS 05.51 Almonte-Marismas, presentan distintos tipos dada la gran extensión de sus aguas. Hay que distinguir entre el acuífero libre y el acuífero semiconfinado o confinado.

El agua subterránea en la zona donde el acuífero es libre es dulce, en general, poco mineralizada y de tipo clorurada sódica. Localmente también presentan facies bicarbonatada-clorurada sódico-cálcica, bicarbonatadas cálcicas y clorurada sódico-cálcica.

En el acuífero semiconfinado o confinado, existe agua dulce y agua salada, separadas por una zona de interfase que, aunque no bien conocida, se sitúa al Oeste del Brazo de la Torre, con una orientación NO-SE. Las aguas que se sitúan al Oeste de la zona de la interfase, son de características similares a las del acuífero libre. Sin embargo las aguas que se presentan al oeste de dicha zona alcanzan concentraciones de varios gramos de cloruros por litro.

Las zonas con mayor contenido en nitratos, superiores a 100 mg/l se encuentran en Palos Moguer y al sur de Villamanrique, Contenidos entre 50 y100 mg/l se localizan en las proximidades de Pilas, Almonte y Rociana. En el resto del acuífero, las aguas presentan contenidos en nitratos, en general, por debajo de los 25 mg/l.

La empresa que gestiona el abastecimiento a Hinojos es la "Mancomunidad Aguas del Condado" no ha facilitado ningún dato de análisis de agua por lo que se ha hecho uso de datos de la Base de datos del IGME. Solamente se dispone de 1 análisis del Sondeo Nº 3 (nº inventario 114150105) cuyo análisis es de fecha del 11 de diciembre del 2002.

	PUNTO	Cl	SO ₄	HCO ₃	CO ₃	NO ₃	Na	Mg	Ca	K	C.E	рН	FECHA
l	101110	(mg/l)						μS/cm	P	120111			
Ī	114150105	97	16	91	0	5	50	11	35	3	466	6,8	11/12/2002

Las aguas que presenta la captación son de buena calidad, de mineralización media con concentraciones bajas de nitratos.

Los análisis de aguas correspondientes a la captación 114210049 en distintos años se ha representado en un diagrama de Piper-Hill-Langelier.

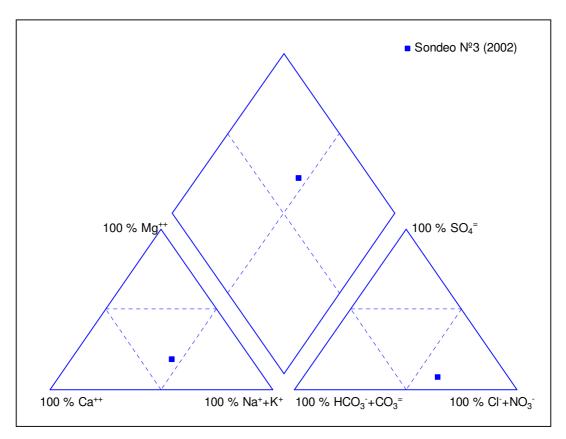


Fig. 3 Diagrama de Piper-Hill-Langelier de la captación nº 114210049.

Como se puede observar en el diagrama de Piper-Hill-Langelier la captación presenta aguas con facies clorurada sódico-cálcica.

4. FOCOS POTENCIALES DE CONTAMINACIÓN

4.1 ORIGEN DE LA INFORMACIÓN SOBRE PRESIONES Y FOCOS DE CONTAMINACIÓN

Los focos potenciales de contaminación se han recopilado de las siguientes fuentes de información:

- Inventario de campo. Focos de contaminación puntuales más próximos a las captaciones visitados en la campaña de campo.
- Focos de contaminación en coberturas GIS:
 - IMPRESS: Graveras, vertederos, industrias IPPC, aguas de drenaje de minas, piscifactorias y gasolineras.
 - SIA (Sistema Integral de Información del Agua): EDAR, puntos de vertido, cabezas de ganado y contaminación difusa (estos dos últimos se representan por nº de cabezas de ganado y kg/km², respectivamente, siendo estos valores los correspondientes a la totalidad de la comarca en la que se encuentra la captación).
 - CORINE: Usos del suelo para el año 2000. Los focos de contaminación poligonales y lineales obtenidos mediante esta fuente de información han sido contrastados en campo y mediante el análisis de ortofoto digital para incluir las presiones correspondientes a los distintos usos del suelo que no se incluyan en el CORINE.

4.2 INVENTARIO DE FOCOS POTENCIALES DE CONTAMINACIÓN

4.2.1. Actividad agrícola

El término municipal de Hinojos, El principal cultivo es el olivar, de hecho el 50% de los cultivos desarrollados en este término municipal corresponde a este cultivo Según el Instituto Nacional de Estadística de Andalucía para el año 2007 el aprovechamiento de las tierras labradas en el municipio de Hinojos se representa en la siguiente tabla.

Cultivos	Hectáreas
Olivar	2.100
Melón	30
Cultivos herbáceos	838
Naranjos y frutales	1.319

Debido a la naturaleza y características de las formaciones permeables de la zona de estudio, tratándose de zonas detríticas, hay que tener en cuenta que un uso de fertilizantes químicos en exceso para el abonado de los regadíos puede provocar una contaminación.

4.2.2. Actividad ganadera

En cuanto a la actividad ganadera del municipio, la mayoría de la cabaña ganadera la representa el ganado caprino. No existen granjas en el ámbito de la zona de recarga de las captaciones.

Los datos de actividad ganadera para toda la comarca del condado litoral según datos del 2005 del SIA (Sistema Integral de Información del Agua) se muestran en la tabla siguiente.

Actividad ganadera	Nº de cabezas de ganado
Porcino	6.136
Bovino	5.414
Caprino	24.738
Equino	3.296
Aves	378.000

4.2.3. Actividad Industrial

El término municipal de Hinojos presenta una importante actividad industrial, en lo que se refiere a actividades agropecuarias. Estas industrias se suelen situar en las mismas zonas de producción agrícola por lo que existe una estrecha relación entre una actividad y otra.

En las inmediaciones de la zona de las captaciones existente un polígono a un kilómetro aguas arriba de la zona de las captaciones.

4.2.4. Residuos sólidos urbanos

Durante la visita al emplazamiento y su entorno no se localizó ningún vertedero.

4.2.5. Aguas Residuales

Desde primeros del año 2004, la Mancomunidad y el Ayuntamiento de Hinojos disponen de una nueva EDAR para depurar las aguas residuales de 5.300 habitantes del municipio de Hinojos.

La depuradora, impulsada por la Confederación Hidrográfica del Guadalquivir con fondos europeos, se enmarcó dentro del plan operativo del entorno de Doñana.

De ese modo, y por las características específicas de la zona, está preparada para eliminar el nitrógeno y el fósforo de las aguas depuradas antes de su vertido.

Con un caudal diario de tratamiento de 1.077 metros cúbicos, esta EDAR cuenta con un sistema de depuración mediante aireación prolongada con recirculación de fangos La Mancomunidad de Aguas del Condado y el Ayuntamiento de Hinojos gestionan la EDAR a partir de un acuerdo que se firmó a comienzos de ese año 2004.

4.2.6. Otros focos de contaminación

No se destaca ningún otro foco de contaminación.

4.3 FOCOS DE CONTAMINACIÓN PRÓXIMOS A LA CAPTACIÓN

La zona de captaciones es una zona rodeada de pinos dentro del Parque Natural de Doñana donde existe una ligera actividad ganadera (bovino) por lo que no se ha detectado focos potenciales de contaminación en el entorno de la zona.

En la figura nº 4 se muestra la situación de los puntos de abastecimiento y su entorno.

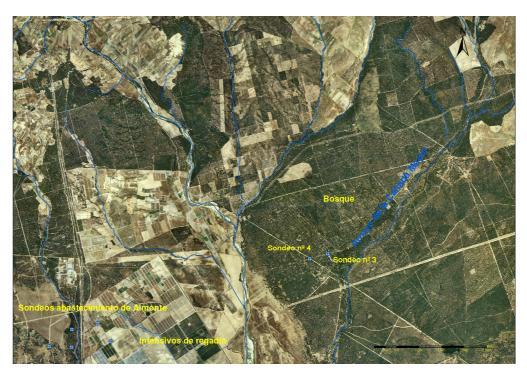


Fig. 4 Esquema situación de los puntos de abastecimiento y posibles focos de contaminación

4.4 INDICIOS DE FOCOS DE CONTAMINACIÓN EN LAS CAPTACIONES

No existen indicios de focos de contaminación en las captaciones aunque. Sería conveniente que se realizara un seguimiento anual de los componente mayoritarios del agua por si en algún momento empezara a aumentar algún parámetro que podría poner en peligro la calidad del agua.

5. VULNERABILIDAD FRENTE A LA CONTAMINACIÓN

La vulnerabilidad frente a la contaminación en las captaciones de abastecimiento se ha definido como la susceptibilidad del agua subterránea a la contaminación generada por la actividad humana en función de las características geológicas, hidrológicas e hidrogeológicas de un área.

Los valores empleados para la estimación de al vulnerabilidad son los correspondientes al método DRASTIC mediante el análisis de la cartografía de la vulnerabilidad intrínseca en medios detríticos. Estos valores de vulnerabilidad se han obtenido del Mapa de Vulnerabilidad de España realizado por el IGME.

Se ha realizado una evaluación hidrogeológica de la unidad en base al funcionamiento hidrogeológico, zonas de recarga, circulación del flujo subterráneo, zonas de circulación preferencial, funcionamiento libre o confinado, etc, así como un análisis de la distribución de la vulnerabilidad en el entorno y áreas de recarga de las captaciones y su relación con los focos de contaminación.

En general, Las zonas más vulnerables de MAS 05.51 corresponden a aquellas donde la permeabilidad es mayor dentro del acuífero libre. También será más sensible cuanto más próximo se encuentre el nivel freático de la superficie.

5.1 DISTRIBUCIÓN EN EL ENTORNO Y ÁREAS DE RECARGA

Los Limos y arenas del Mioceno-Plioceno que conforman el área de recarga de las captaciones presentan una vulnerabilidad alta a la contaminación debido a su elevada permeabilidad por porosidad.

5.2 RELACIÓN DE LA VULNERABILIDAD CON LOS FOCOS POTENCIALES DE CONTAMINACIÓN

El acuífero asociado a la MAS 05.51 Almonte Marismas es muy vulnerable a la contaminación debido a su carácter detrítico. Las zonas más vulnerables son aquellas donde la permeabilidad es mayor dentro del acuífero libre. También será más sensible cuanto más próximo se encuentre el nivel freático de la superficie.

En la actualidad los residuos sólidos y líquidos de origen urbano no representan un riesgo grave de contaminación porque, prácticamente la totalidad de los pueblos de la zona mandan sus residuos sólidos a plantas de reciclado (Villarrasa y Bollullos de la Mitación) y depuran sus aguas residuales.

La fuente principal de contaminación tiene su origen en las actividades agrícolas con el uso de fertilizantes y productos fitosanitarios.

En el acuífero no existe en la actualidad riesgo de intrusión marina, no obstante, como consecuencia de la excesiva e inadecuada explotación del acuífero en su sector nororiental se está produciendo un avance de la interfase salina definida por una franja, de orientación noreste-suroeste que marca la separación entre las aguas dulces y salinas y fósiles del fondo de las marismas.

El nitrato es el agente contaminante más importante, procede de los fertilizantes usados en las tareas agrícolas. Las concentraciones máximas de nitratos se encuentran en las zonas de Palos, Moguer y sur de Villamanrique, por encima de los 100 ppm.

En general no hay problemas graves de contaminación que puedan afectar ni a los usos del agua subterránea ni a la ecología de la zona.

5.2.1. Tipología de la distribución de presiones y vulnerabilidad

Al estar dentro del Parque Natural de Doñana las zonas de alimentación de las captaciones no se han detectado focos de contaminación que puedan poner en peligro la calidad de las aguas subterráneas salvo que exista un vertido incontrolado aguas arriba de la captación.

5.2.2. Evaluación cualitativa de la vulnerabilidad y el riesgo

En el ámbito de riesgo de contaminación de acuíferos, la peligrosidad viene dada por la capacidad del contaminante de producir mayor o menor daño sobre el agua subterránea. La peligrosidad de un contaminante es función de tres factores (De Keteleare et al., 2004):

- La nocividad intrínseca del contaminante inherente a su propia naturaleza.
- La intensidad potencial del episodio de contaminación, dependiente de la cantidad de contaminante vertido.
- La probabilidad de que el peligro se active, esto es, de que se desencadene una fuga o vertido del contaminante.

A partir de estos factores, la metodología propuesta por De Keteleare et al. 2004 para la evaluación y cartografía de la peligrosidad se resume en el siguiente Índice de Peligrosidad (Hazard Index, HI):

H = nocividad del contaminante o de una actividad antrópica potencialmente contaminante.

Qn = cantidad de contaminante

Rf = probabilidad de ocurrencia del accidente

El índice de peligrosidad HI se obtiene mediante el producto de los tres factores y puede variar entre un factor mínimo de 0 y un máximo de 120.

HI= H. Qn. Rf

HI index	Clase de peligrosidad
[0-24]	Muy baja
(24 – 48]	Baja
(48 – 72]	Moderada
(72 – 96]	Alta
(96 – 120]	Muy alta

Para el análisis de la peligrosidad se ha procedido a puntuar cada presión según sus características. El valor H viene definido por el método. Se ha puntuado el factor Qn según la dimensión del peligro a partir de su identificación en el campo. El valor máximo de Qn es igual a 1,2. El valor asignado a este parámetro dependerá de la extensión que ocupe el foco potencial de contaminación dentro de la zona de recarga de las captaciones a proteger y de la cantidad del contaminante.

Al factor Rf se le ha dado la mayor puntuación (Rf=1) excepto cuando existen datos que demuestran que la probabilidad de contaminación es nula.

En función de la clase de peligrosidad y el valor de la vulnerabilidad en la zona donde se sitúa el foco potencial de contaminación se obtiene un valor cualitativo del nivel de riesgo.

EVALUACIÓN DEL RIESGO									
PELIGROSIDAD	VULNERABILIDAD								
	Muy baja	Baja	Moderada	Alta	Muy alta				
Muy baja	Muy bajo	Muy bajo	Bajo	Bajo	Bajo- Moderado				
Baja	Muy bajo	Bajo	Bajo	Bajo- Moderado	Moderado				
Moderada	Bajo	Bajo	Moderado	Moderado	Alto				
Alta	Bajo- Moderado	Moderado	Moderado- Alto	Alto	Alto				
Muy alta	Moderado	Moderado	Alto	Alto	Muy alto				

Las zonas de cultivos únicos focos alejados la zona de alimentación, representan un riesgo bajo para la afección a la calidad de las aguas subterráneas de la zona.

6. DELIMITACIÓN Y ZONIFICACIÓN DEL PERÍMETRO DE PROTECCIÓN

6.1 ANÁLISIS HIDROGEOLÓGICO

6.1.1. Análisis hidrogeológico y geometría del acuífero

Desde el punto de vista hidrogeológico, los puntos de abastecimiento de Hinojos captan aguas de limos y arenas Mioceno-Pliocenas, con permeabilidades de conjunto medias (K=10-40 m/día). En el punto nº 114150105 (Sondeo nº 3) se obtuvo una transmisividad de 829 m²/d y en el punto nº 114150106 (Sondeo nº 4) se obtuvo una transmisividad de 200 m²/d.

El substrato del acuífero que está constituido por margas azules y actúa como impermeable no aflora en la zona de los puntos de abastecimiento.

Los límites naturales de la masa de agua Almonte-Marismas vienen impuestos al norte por la divisoria de aguas subterráneas de la cuenca del río Tinto y los afloramientos impermeables de las margas azules del Mioceno superior-Plioceno; al este y sureste, por los ríos Guadiamar y Guadalquivir, y Al sur y oeste por el Océano Atlántico. Cuando el acuífero aparece semiconfinado o confinado, aparecen margas azules a muro y arcillas de las marismas a techo. En la zona libre el tramo permeable aumenta progresivamente su espesor de norte a sur, pasando de 15-20 m en Almonte hasta 80-100 m en El Rocío. Por debajo de Las Marismas, zona confinada, el acuífero incrementa aún más su potencia, llegando a sobrepasar los valores de 200 m en una gran extensión.

6.1.2. Funcionamiento (Isopiezas y líneas de flujo)

Las distintas piezometrías realizadas en la zona indican que la orografía del terreno nos permitir definir el sentido y la dirección del flujo subterráneo que tiene sentido norte-sur. A unos 3 km al norte de los puntos de agua existe una divisoria de aguas (ver figura nº 5).

Vilamantique de la condesa

La cota piezométrica de los puntos de la zona está entorno a los 25 m. (s.n.m).

Fig. 5 Esquema del flujo subterráneo.

6.2 CÁLCULOS JUSTIFICATIVOS (BALANCE DE RECURSOS O MÉTODOS ANALÍTICOS)

Para la delimitación del perímetro de protección se ha utilizado el criterio del tiempo de tránsito según el método de Wyssling, en el que se distinguen tres áreas de restricciones de uso crecientes con la proximidad a la captación, denominadas:

- Zona I o de restricciones absolutas (tiempo de tránsito 1 día)
- Zona II o de restricciones máximas (tiempo de tránsito 60 días)
- Zona III o de restricciones moderadas (tiempo de tránsito 4 años)

La resolución del método precisa conocer las siguientes variables:

i = gradiente hidraúlico

Q = caudal de bombeo (m³/s)

K = perabilidad horizontal (m/s)

m_e = porosidad eficaz

b = espesor del acuífero

A partir de estos datos se calcula el radio de influencia o de la llamada zona (X0), la anchura del frente de llamada (B), el ancho de llamada a la altura de la captación (B'), y la velocidad efectiva (Ve) según las expresiones siguientes:

$$X_0 = \frac{Q}{2 \cdot \pi \cdot b \cdot i \cdot k}; \qquad B = \frac{Q}{k \cdot b \cdot i}; \qquad B' = \frac{B}{2}; \qquad V_e = \frac{K \cdot i}{m_e}$$

La distancia desde la captación a un punto con un tiempo de tránsito t (en días) viene dada por la expresión:

$$S = \frac{\pm l + \sqrt{l \cdot (l + 8 \cdot X_0)}}{2}$$

Donde I es el producto de la velocidad efectiva por el tiempo de tránsito. El signo positivo inicial se utiliza para calcular la distancia aguas arriba de la captación y el signo negativo para calcular la distancia aguas abajo de la captación.

Para establecer los perímetros de protección de los puntos de abastecimiento se ha considerado por proximidad únicamente los datos de partida de la captación nº 114150106.

Datos de Partida	Abreviatura	Datos	Procedencia
Caudal de drenaje (l/seg)	Q_1	28	Ficha IGME
Transmisividad (m ₂ /día)	T	202	Ficha IGME
Espesor total zonas transmisivas (m)	b	17,9	Estimación propia
Permeabilidad (m/día)	K	11	Cálculo
Porosidad	m	0,035	Estimación propia
Gradiente hidráulico	i	0,0055	Cálculo propio
Dirección del flujo respecto al Norte	grados	18	Estimación propia
Longitud captación (UTM) Huso 29	m	727167	Medición con GPS
Latitud captación (UTM) Huso 29	m	4119290	Medición con GPS

Con estos valores, los parámetros de partida para definir las zonas de protección de acuerdo con el método de Wyssing se recogen para cada punto de abastecimiento en la siguiente tabla.

Hinojos	Sondeos nº 3 y 4
X _o o radio de llamada (m)	346
B o ancho de llamada (m)	2.175
B'o ancho de llamada a la altura de la captación (m)	1.087
V _e o velocidad eficaz (m/día)	1,78

6.3 ZONAS DE INFLUENCIA Y ZONAS DE ALIMENTACIÓN

La alimentación se produce fundamentalmente a partir de la infiltración de la Iluvia y en menor parte por el retorno de los excedentes de agua empleados en regadío. La descarga natural se produce por alimentación de los arroyos de la zona y extracciones por bombeo.

6.4 ZONA DE RESTRICCIONES ABSOLUTAS

Se considera como el círculo cuyo centro es la captación a proteger y cuyo radio (sl) es la distancia que tendría que recorrer una partícula para alcanzar la captación en un día. Esta zona tendrá una forma circular u oval dependiendo de las condiciones hidrodinámicas.

Hinojos	Sondeos nº 3 y 4
S ₁ aguas arriba (m)	36
S ₁ aguas abajo (m)	34

En esta zona se evitarán todas las actividades, excepto las relacionadas con el mantenimiento y explotación de la captación, para lo que se recomienda la construcción de una caseta que proteja la captación (en el caso de que no exista), que se valle la zona definida y se instale un drenaje perimetral.

6.5 ZONAS DE RESTRICCIONES MÁXIMAS

La zona de restricciones máximas se considera como el espacio que tendría que recorrer una partícula para alcanzar la captación en más de un día y menos de 60 días. Queda delimitada entre la zona de protección inmediata y la isocrona de 60 días. Los datos obtenidos con el método de Wyssling empleando las variables antes descritas en el apartado 6.2, para un tiempo de 60 días, se recogen en la tabla siguiente:

Hinojos	Sondeos nº 3 y 4		
S ₂ aguas arriba (m)	330		
S ₂ aguas abajo (m)	224		

A efectos prácticos, se adoptará el polígono teórico salvo que éste supere los límites establecidos en la poligonal envolvente de la captación.

6.6 ZONA DE RESTRICCIONES MODERADAS

Los datos obtenidos con el método de Wyssling empleando las variables antes descritas en el apartado 6.2, para un tiempo de 4 años, se recogen en la siguiente tabla.

Hinojos	Sondeos nº 3 y 4	
S ₃ aguas arriba (m)	3.087	
S ₃ aguas abajo (m)	566	

Al igual que en el caso de la zona de restricciones máximas, a efectos prácticos, se adoptará el polígono teórico salvo que éste supere los límites establecidos en la poligonal envolvente de la captación.

6.7 ZONA DE PROTECCIÓN DE LA CANTIDAD

Se delimita un perímetro de protección de la cantidad, con el apoyo de criterios hidrogeológicos, en función del grado de afección que podrían producir determinadas captaciones en los alrededores.

Para la protección de la cantidad del manantial de abastecimiento se definirá un perímetro en función del radio de influencia R:

$$R = 1.5 (T t / S)^{1/2}$$

Donde:

T = transmisividad

t = tiempo de bombeo

S = coeficiente de almacenamiento

Hinojos	Sondeos nº 3 y 4		
T(m ₂ /día)	220		
t (días)	120		
S	0,035		
R	1.300		

Dadas las características hidrogeológicas del acuífero se delimitará una zona de protección de la cantidad para las captaciones de abastecimiento de entre 1300 m.de radio, dentro de los límites de la zona moderada.

7. RED DE CONTROL Y VIGILANCIA

En general, se debe plantear un sistema de vigilancia ante la posible afección de actividades potencialmente contaminantes y dentro de la envolvente, para llevar a cabo un seguimiento de la eficiencia del perímetro de protección delimitado, que garantice el mantenimiento de la calidad del agua en los puntos de abastecimiento.

Debido al bajo riesgo de contaminación de las aguas subterráneas al estar lejos de focos potenciales de contaminación es aconsejable como medida preventiva para la detección de cualquier cambio en la calidad, hacer análisis anuales de los elementos mayoritarios en el agua.

Asimismo, en caso de producirse una situación especial que provoque un vertido potencialmente contaminante, en las proximidades de la captación, se llevara a cabo una campaña de seguimiento de la calidad del agua, con el análisis de los parámetros que en cada momento se juzgue necesario determinar, y con la periodicidad que aconsejen las circunstancias.

El cuadro adjunto sintetiza el régimen de autorizaciones recomendado en las zonas de sectorización del perímetro de protección.

ACTIVIDAD	ZR.	ZR.	ZR.
	ABSOLUTAS	MÁXIMAS	MODERADAS
AGRICULTURA Y GANADERÍA			
Uso de fertilizantes y pesticidas	Р	Р	S
Uso de herbicidas	Р	Р	S
Almacenamiento de estiércol	Р	Р	S
Granjas porcinas y de vacuno	Р	Р	S
Granjas de aves y conejos	Р	Р	S
Ganadería extensiva	Р	S	Α
Aplicación de purines porcinos y vacunos estabilizados por compostaje	Р	Р	Р
Depósitos de balsas de purines	Р	Р	Р
Almacenamiento de materias fermentables para alimentación del ganado	Р	Р	S
Silos	Р	Р	S
RESIDUOS SÓLIDOS			
Vertederos incontrolados de cualquier naturaleza	Р	Р	Р
Vertederos controlados de residuos sólidos urbanos	Р	Р	S
Vertederos controlados de residuos inertes	Р	S	S
Vertederos controlados de residuos peligrosos	Р	Р	Р
VERTIDOS LÍQUIDOS			
Aguas residuales urbanas	Р	Р	Р
Aguas residuales con tratamiento primario, secundario y terciario	Р	Р	S
Aguas residuales industriales	Р	Р	Р
Fosas sépticas, pozos negros o balsas de aguas negras	Р	Р	Р
Estaciones depuradoras de aguas residuales	Р	Р	S
ACTIVIDADES INDUSTRIALES			
Asentamientos industriales	Р	Р	Р
Canteras y minas	Р	Р	Р
Almacenamiento de hidrocarburos	Р	Р	Р
Conducciones de hidrocarburos	Р	Р	Р
Depósitos de productos radiactivos	Р	Р	Р
Inyección de residuos industriales en pozos y sondeos	Р	Р	Р
OTROS			
Cementerios	Р	Р	Р
Campings, zonas deportivas y piscinas públicas	Р	Р	S
Ejecución de nuevas perforaciones o pozos no destinados para abastecimiento	Р	Р	s

A: Actividad aceptable

S: Actividad sujeta a condicionantes

P: Actividad no autorizada

8. <u>CONCLUSIONES Y RECOMENDACIONES</u>

Actualmente no se han detectado focos de contaminación que puedan poner en peligro la calidad de las aguas subterráneas de la zona. Al estar la mayor parte de la zona de recarga de los puntos de abastecimiento dentro del Parque Natural de Doñana existe un alto grado de protección de la calidad del agua, aunque siempre existirá riesgo potencial de que se produzca contaminación del agua por un vertido en las proximidades de cada captación o por aumento de la salinidad del agua debido a sobreexplotación de las aguas subterráneas en la zona.

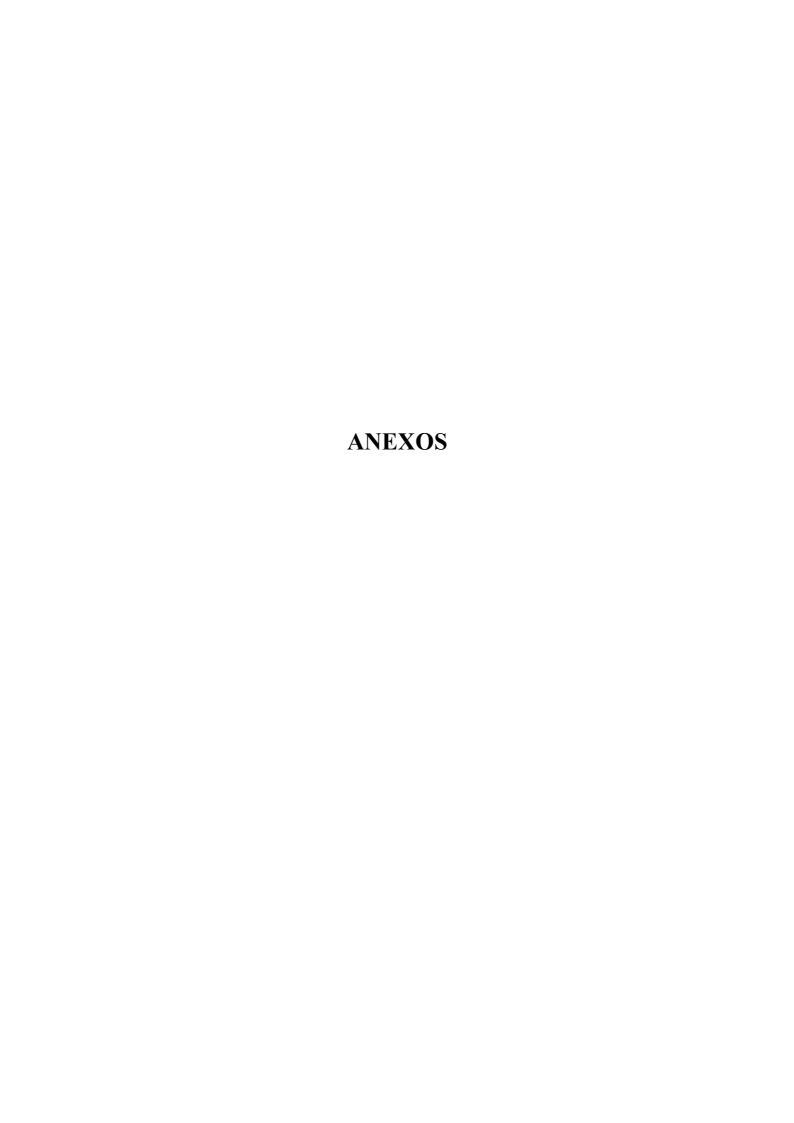
La vulnerabilidad de esta unidad se debe considerar como alta, por lo que las precauciones y vigilancia sobre posibles actividades potencialmente contaminantes dentro de la poligonal deben ser suficientes.

La zonación realizada se ha basado fundamentalmente en criterios hidrogeológicos, apoyándose en cálculos previos realizados según el método de Wyssling.

Es deber del Ayuntamiento velar por el cumplimiento de las restricciones, dentro de unos límites razonables, de cada una de las zonas definidas en esta propuesta. Aquellas zonas que pudieran estar parcialmente fuera de los límites del municipio, deberían comunicárselo a los Ayuntamientos afectados y coordinar actuaciones para velar, en la medida de lo posible, porque se cumplan las normas correspondientes.

9. REFERENCIAS

ITGE-Junta de Andalucía. 1998. Atlas hidrogeológico de Andalucía.


La Gestión Hidráulica del Parque Nacional de Doñana. Confederación Hidrográfica del Guadalquivir.

ITGE-Confederación Hidrográfica del Guadalquivir. 2000-2001. Revisión y Actualización de las Normas de Explotación de las Unidades Hidrogeológicas de las cuencas del Guadalquivir y Guadalete – Barbate. Norma de Explotación de la Unidad Hidrogeológica 05.51 (Almonte - Marismas).

Martínez Navarrete, C. y García García, A. 2003. Perímetros de protección para captaciones de agua subterránea destinada a consumo humano. Metodología y aplicación al territorio. Publicaciones del Instituto Geológico y Minero de España. Serie: Hidrogeología y Aguas Subterráneas nº 10. Madrid.

Instituto Nacional de Estadística; http://www.ine.es/

Instituto Nacional de Estadística de Andalucía; http://www.juntadeandalucia.es:9002/sima/htm/sm21005.htm

ANEXO I REPORTAJE FOTOGRÁFICO

Vista general sondeo de abastecimiento nº3 (1141-5-0105).

Recinto vallado del sondeo nº3.

Parque de bombas en caseta existente junto al sondeo nº 3.

Vista general sondeo de abastecimiento nº4 (1141-5-0106).

Recinto vallado del sondeo nº4.

ANEXO II FICHAS DE INVENTARIO DE CAPTACIONES

Instituto Geológico	N° de registro		ENADAS nbert
y Minero de España	Nº de puntos descritos	ai ×	Y
INVENTARIO	Hoja topográfica 1/50.000	Huso Sector X	TM Y
PUNTO ACUÍFERO	Número	30 195229	9121942
Croquis acotado o mapa detallac	io 3 4 Cuença Nidrográfica	(5) Objeto	
	Unidad hidrogeológic		
	Sistema aculforo	Sandrall	ráfica
	Provincia		Scalia
	Tármino Municipal HITVC \C	• []	obra
	Toponimia		
Tipo de perforación		(0)	BOMBA Walial Smill
Trabejos aconesjados por			ecided
1	•	Potenciacv Mar	ca y tipo
9		ción?	
Abes to wite	Busing acute	10	
Centicled extraids (Dm³)		cuta in obra	
	Escala de representación		P C I G H Ex LI Ve
Durante 367 dies	39,00	el punto[
	DE NIVEL Y/O CAUDAL	Sistema de Explotación:	
Fecha 8 respect	o a la Caudai Cota absolut noia m/h del agua	Método de medida	
		(13) Zones Hümedes:	
14) Usuario A YUN 1	AMIONTO DO	himoges	
Nombre Propietario		Telf	
Dirección	C.1. 7	Localidad	
OBSERVACIONES	Sch 100 No	3	•••••••••••••••••••••••••••••••••••••••
(16)	٦	(17) A -/ (5 - 19/10)	
Modificaciones efectuades en los o		Instruido por MAN (CVVC)	
Año en que se efectuó la modifica			17.12.1209
Consumo anual (m³/añ	io)	Días de bombeo	Par la mache
Caudal instantions (1)	<u> </u>		in meche
Caudal instantáneo (l/ Volumen diario (m³/dí	(s)	Consumo municipio (m³/año Entidad gestora	

.

18)	B DESCRIPCIÓN DEL CORTE GEOLÓGICO											
Número de orden	Edad geológica	Litología		Profundidad del techo	Profundidad del muro	Está interconectad	LEs aculfero?	OBSERVACIONES				
							. n					
			<u> </u>			금						
							<u></u>					
gl.m							∐					
				\top								
						Ē						
100							닖	***************************************				
. 23						:	∐					
		. Poets						••••••				
19		ENSAY	OS DE I	BOMBEO		20	COLUMNA EST	RATIGRAFICA				
		1.01				\neg	1					
Fech	•					metros	LITOLOGIA	AS (EDAD GEOLÓGICA)				
Cau	ded extraido	(m³/h)										
Dura	ción del bar	mbeo		norms	minutos			······································				
Depr	esión en me	itros					1					
Tran	emisividad (m²/seg)										
Code.	dende de ele	nacenamiento										
COIR												
Fech	•						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	dad autostda	/ 3.5 \					<u></u>	······				
Casor	daci extraido	(m-/n)						······································				
Dura	ción del bon	nibao	H	NOTES	minutos			***************************************				
Duor	aeión an me	ritros										
Tran	emielvidad (i	m^/seg)						***************************************				
Coffic	iente de alm	nacenamiento					. 					
21		CARACTERÍS	STICAS	TÉCNICAS				***************************************				
		PERF	DRACIÓN				·					
De	a Ø	en mm.		OBSERVAC	HONES	······································		······································				
			•••••	••••••••••			•					
•••••	·		,		<i></i>		•					
		•••••••••••	***************************************	***************************************	***************************************		·	,				
	 	••••••	••••••	•								
••••••		•••••••••••			·,,							
			•••••	·····				***************************************				
				••••••••								
		REVEST	MENTO				•	•••••••••••••••••••••••••••••••••••••••				
De	a Ø	en mm.		OBSERVAC	IONES	┪	•••••					
				ADOLA NO								
0-30	ع اح	0.0	•				••••••					
*****************					•••••••							
			•••••	•••••••••••••••••••••••••••••••••••••••				•••••••				
•					••••••••••••							
	····				•••••	···						
			•••••				fristit y Mii	ruto Geológico				
***************************************							y Mi	nero de España				

leading Control	1 Nº de regist	m [[]	11100			ENADAS nbert
Instituto Geológico y Minero de España				77	x 35, 1	Y
INVENTARIO			000		U Humo Sector X	тм
PUNTO ACUÍFERO		No	mero		36 194919	4121690
Croquis acotado o mapa detallad	o 3	Quence	hidrográfica		S Chijeto	
		Unidad	hidrogeológics		[2] [3]	
		Sistem	aculfero		- 4- 45	ráfica
			ieH.v.o	•	Naturaleza	W 050
			Municipal		~	a obra
		Toponir	nie			**************************************
7) Tipo de perforación	10100001001111111111111111111111111111			B)	MOTOR LECKTRICA No.	BOMBA WORTICAL SW
Trabejos aconsejados por	1					SVMERGIPA
Afto de ejecución	,			Potencia		rcs y tipo
o	10 ₆ 1	lene perím	etro de protecc	lón?		
Difficación del agua	Sa	oliografia de	ol punto aculfei	ro		
Cantidad codraida (Dm ³)					1	<u>— </u>
	\Box					
Durante 9(1) dies	Re	des a las q	ue pertenece e	i punto		
11 MEDIDAS I	DE NIVEL	Y/O CAL	JDAL	_	12 Sistema de Explotación:	
Fecha g Altura d respect	o a fe ncia	Caude/ m/h	Cota absolute del agua	Método de medic	.	
	$\Box \Box$				13 Zones Húmedas:	
	$\Box \Box$			}		
14) Limento			•	1		
Nombre Propietario	·····				Telt	
Dirección		••••••		***************************************	Localided	
OBSERVACIONES	.کر	CN 000	7 N ° 4	<i>.</i>		
	••••••	•••••	••••••			
16 Modificaciones efectuadas en los o			П	(17) Inetn	ANTONIO	CARMON
Modificaciones efectuadas en los e	datos del pun	do acuffero	····	1100		
Modificaciones efectuadas en los o				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		na 12 7009
	ción					m 12 7009
Afto en que se efectuó la modifica	io)				Fec	Per la rectu

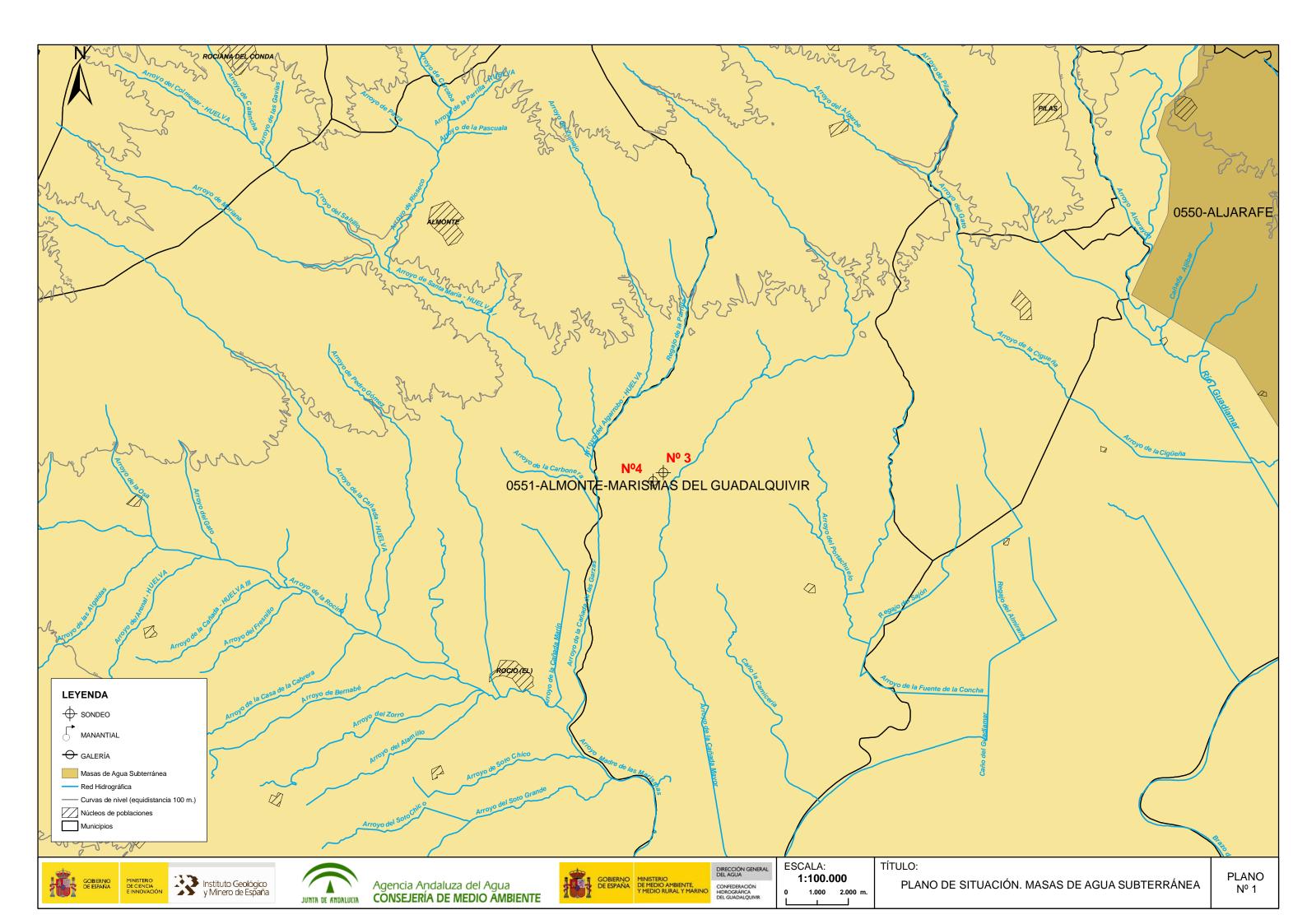
18	18) DESCRIPCIÓN DEL CORTE GEOLÓGICO											
						Ш						
Núme de ord	ro	Edad ológica	Litolog	ia	Prof	Esta interconect		¿Es aculfero?	OBSERVACIONES			
) 					techo	del muro]				
								J [∷]			***************************************	
] [<u> </u>		
] [
	ה ה	$\overline{\Box}$			\Box			$\overline{\Box}$		\Box		
	_	<u> </u>		<u> </u>	\perp			,		<u> </u>		
	ا ا				Ш					Ш		
		7.4										
	1			52 14						$\overline{\sqcap}$		
	<u> </u>		5104			<u> </u>						
(19)			ENSA	YOS DI	= BON	IREO			CC	OLUMNA EST	RATIGRAFÍCA	
F	echa							metros		LITTOL OGS	AS (EDAD GEOLÓGICA)	
۱ ,	en where	actraido	(m34s)						4			
`	inderenta :		(in-nij				1				······································	
0	Purmolón	del bon	nbeo		hores		minutos					
٥	apresió	n en me	dros							••••••		
	-									•••••••••••		
"	ranem ia	iviund (i	m ² /eeg)							***********	***************************************	
°	oficient	e de aim	necenemiento							•••••	······································	
_								*******************************		******************************	***************************************	
ľ	echa					لــا			-			
c	auded :	edraido	(m³/h)					••••••	••••	***************************************	***************************************	
ا ا	u meción	del ban	nhao		hores		minutos			*************************	***************************************	
		-				·		***************************************	†	***************************************	·/····································	
ם	ергееіб	n en me	tros									
т	ranomio	ividad (r	m ² /seg)							140011111111111111111111111111111111111	***************************************	
ı								••••••		********************	······································	
	Officient	_	acenemiento	10						*****************	······································	
(29)			ARACTER	FORACIÓ		NICAS			I			
De	-	Ø	en mm.	PURACIC		BSERVAC	YOMES				·***	
_	<u> </u>	-		+	<u>_</u>	- BOLIVAO	TOTALS					
************	**********		***************************************	·	**********	•••••			[
	,		***************************************			······					·········	
	••••••	ļ				•				***************************************	***************************************	
	********				•••••	•	•••••••			***************************************		
			*********					······		***************************************	·····	
	••••••••		·····			····				•••••		
		·····	••••••••••••			•••••••						
	••••••	***********	····				***************************************			••••••		
			REVES	TIMIENT	o			••••••		······		
De	a	Ø	en mm.		0	BSERVAC	IONES			***************************************	······································	
0-3	c	500				-					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			·····			·····						
			••••••••				••••••••			•••••		
***********		***********					••••••••••••••••••••••••••••••••••••••		[**********************		
		***********			•••••			····				
***************************************			·····		· · · · · · · · · · · · · · · · · · ·	·····	·····	<u></u>		• • • • • • • • • • • • • • • • • • • •	······································	
	·		•••••••		•••••					1 7		
••••••		••••••			***************************************				•	• Instit	tuto Geológico nero de España	
•••	••••	•••••••							4	→ → y Mi	nero de España	

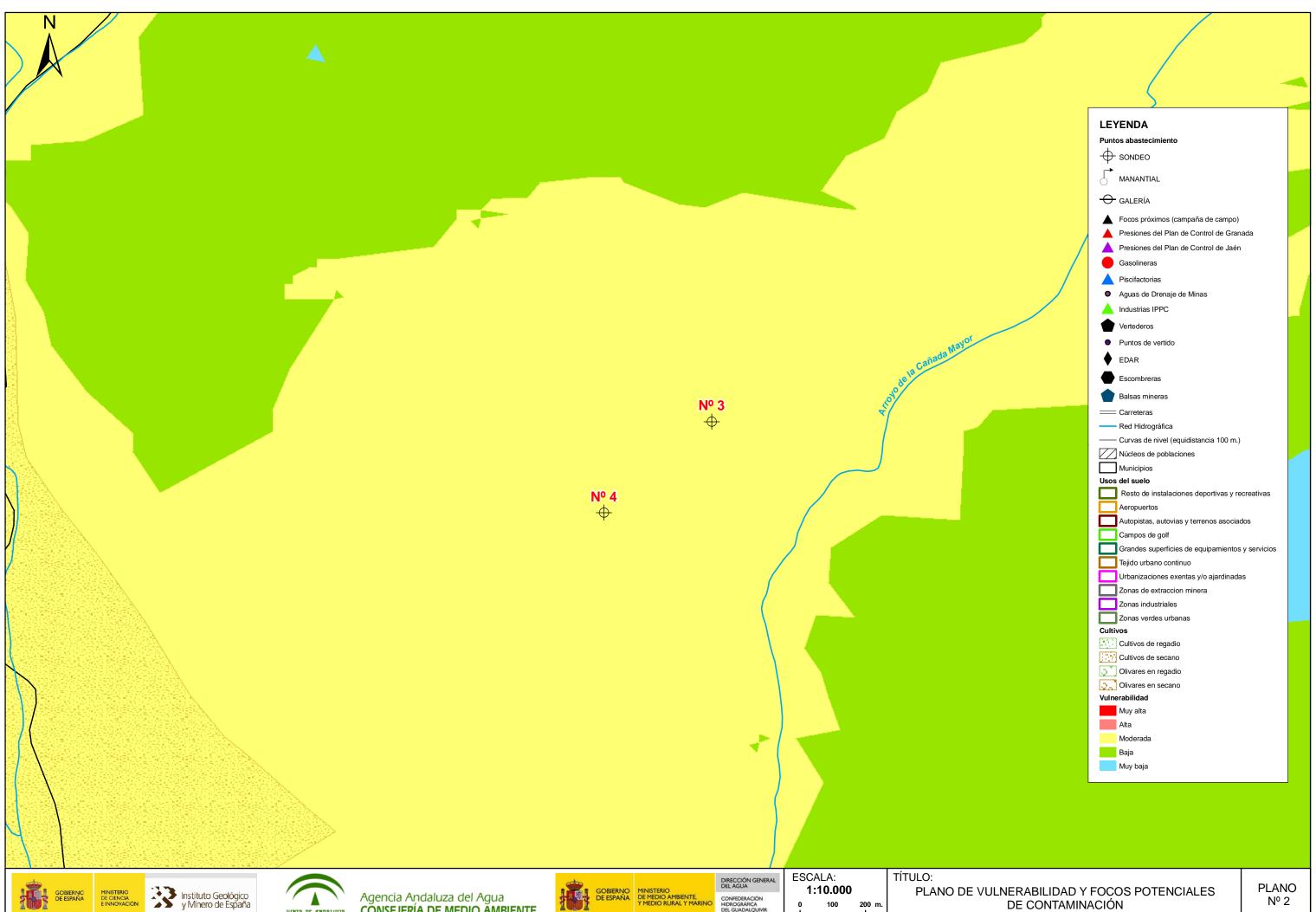
ANEXO III FICHAS DE INVENTARIO DE PRESIONES

Sustanetas contaminantes	WITEM Tes	WITRATES	WITH ATES DOSTICIONS			Observaciones					
Datos de producción	Mayes	UNAS 26 CABBBAS	MLh	٠,							
Dascripción	VTILIZACION DO ABONZA Y POSTICIONS	excremontes	CONTAIN INACION DE PLEAS, ROSIONOS			Estado de las medidas					
Estado	Activo	Betive	IWACTIVO			Medidas de contencion existentes					
Tipo de actividad	AGRICOLA	GANBOERIA	6380			Residuos o material abandonado					
Nombre	ALCACHOFAS	CORPUS DS				Residuos producidos		ABowo	450MORES		
		2			9		1			*	\$ 9

oción Familio Provincia Coordenadas Sugerficia Superficia construida	801168 NA SEVILLA X= 229601 VARINS NABOLIS	GULLEM SOULLA K=22982350 CZ HAS	641 LLOW SOULLD (2: 219820) 0' 2 HPS		
Territrio	64168 MM	GULLEM			
Disposition					
				9	

	1	2		9	9
Presencia de otros pozos/manantial					
Distancia al cauce más próximo					
Nombre del cauce					
Nombre del Posición respecto a la zona cauce	EN SOND PE ROCANGA	GW 75WA NG RECARSO	on ser no		




INDICE DE PLANOS

Plano $n^{\rm o}$ 1 - Situación de las captaciones de abastecimiento.

Plano nº 2 - Mapa de vulnerabilidad y presiones.

Plano nº 3 - Mapa del perímetro de protección.

